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A B S T R A C T

Plane Wave Imaging is a fast imaging method used in ultrasound, which allows a high frame rate, but with
compromised image quality when a single wave is used. In this work a learning-based approach was used to
obtain improved image quality. The entire process of beamforming and speckle reduction was embedded in a
single deep convolutional network, and trained with two types of simulated data. The network architecture was
designed based on traditional physical considerations of the ultrasonic image formation pipe. As such, it includes
beamforming with spatial matched filters, envelope detection, and a speckle reduction stage done in log-signal
representation, with all stages containing trainable parameters. The approach was tested on the publicly
available PICMUS datasets, achieving axial and lateral full-width-half-maximum (FWHM) resolution values of
0.22 mm and 0.35 mm respectively, and a Contrast to Noise Ratio (CNR) metric of 16.75 on the experimental
datasets.

1. Introduction

Plane-Wave Imaging (PWI) is an emerging ultrasonic imaging
modality which enables fast acquisition of the entire medium by
emitting few non-focused, tilted, plane waves from a transducer array.
The waves reflected from in-homogeneities in the inspected medium
are separately recorded by each transducer. Subsequently, an image of
the medium is produced by a beamforming process which combines the
received signals in order to allow localization of the scattering struc-
tures with improved Signal to Noise Ratio (SNR). Since each tilted plane
wave covers the entire medium, a coarse image can be produced from
each plane wave and by further coherently combing the separated
images, a fine image of the medium can be produced [1,2]. Generally,
as the number of emitted plane waves is increased, the quality of the
produced image is improved; however, the achievable frame rate is
reduced. Therefore, there is a high interest in advanced beamforming
methods which are capable to produce high quality images from few
plane wave shots [3].

The most common beamforming method is the Delay and Sum
(DAS) method [4]. In this method, a weighted sum of the time-delayed
Radio-Frequency (RF) signals is constructed, with the delay based so-
lely on the position of the transducer elements and the imaged point in
the medium. While the DAS method is fairly simple, and can produce
images in real time, it suffers from low lateral resolution and contrast

quality, especially when using a small number of emitted plane waves
[5]. In the past decade many advanced beamforming methods have
been proposed. Examples are methods based on minimum variance [6],
phase coherence [7–9], Delay-Multiply-And-Sum methods [10,11],
Spatial Matched Filters (SMF) [12–14] and sparsity based methods
[15,16]. Historically, these methods concentrate on enhancing the re-
ceived signals from the focused image point, and reducing off-focus
noise. While this improves the resolution and usually increases the
contrast of the reconstructed images, it does not reduce the granular
speckle pattern, common in medical ultrasonic images.

Speckle is caused by scattering sources which are smaller than the
resolution of the imaging system and are not typically isolated. These
scatterers cause constructive and destructive interferences of the
backscattered waves which are expressed as a granular speckle pattern
in the beamformed image. The speckle can be used to determine scat-
tering properties of the tissue [17] and is also used in tracking of small
displacements in the bloodstream [18]. However, speckle will also tend
to reduce the contrast of reconstructed images and obscure macroscopic
properties of the studied biological tissues, and is therefore generally
treated as undesirable [19].

Speckle reduction techniques have been traditionally implemented
by post-filtering of the already beamformed image. Common techniques
include anisotropic diffusion methods [20–22], methods based on wa-
velet denoising [23,24], and non-local means methods [25–27]. These
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methods treat speckle as unwanted noise in the beamformed image and
try to remove it while maintaining the boundaries between relevant
tissues. The main drawback of these post-processing methods is that
they treat speckle filtering as a process which is independent from the
beamforming process, and therefore neglect RF channel data which is
lost during the beamforming process.

Recently Deep Neural Networks (DNN) has arisen as a promising
framework, providing state-of-the-art performance in a variety of signal
processing and machine learning tasks [28]. These methods are im-
provements of classical neural networks, including networks with more
layers, permitting higher levels of abstraction, and improved techniques
for network optimization and regularization. They have been found
highly successful in image analysis tasks such as classification [29,30]
and segmentation [31–33]. Recently, these methods were applied to
image processing problems such as de-noising [34,35], de-convolution
[36], super resolution [37,38] and medical image reconstruction [39],
and there are indications of improvements over state-of-the-art
methods.

Following the success of deep learning in these domains, the ul-
trasonic community proposed DNN methods for ultrasonic beam-
forming and related image processing tasks. In [40] deep learning was
applied to the RF channel data in order to compress and recover ul-
trasound images. In [41] a beamforming network which operates on
each frequency sub-band was proposed in order to suppress off-axis
scattering. For limited angle PWI beamforming, [42] proposed a con-
ventional deep Convolutional Neural Network (CNN) which operates on
a limited angle RF channel data in order to obtain high quality images.
Training was based on empirical images obtained from the full angle
dataset.

DNN methods have also been proposed for speckle reduction of
ultrasonic images. In [43] a CNN was proposed to approximate con-
ventional despeckling methods in order to substantially reduce in-
ference time. In addition, a network was trained to obtain CT-like
quality by training on simulated ultrasound data based on real human
body CT scans. In [44] despeckling was achieved by a DNN based on a
Generative Adversarial Network (GAN), trained with patches of high
quality and low quality ultrasound images. A GAN based network was
also used in [45] in order to improve the runtime of high-computational
methods such as [27].

In this work the entire process of PWI from a single angle is em-
bedded in a single CNN, including both the beamforming and speckle
reduction stages. The network follows a classical ultrasonic re-
construction pipeline of beamforming, envelope detection and speckle
suppression. However, in contrast to the classical reconstruction pro-
cess, details of the signal-to-image inference are learned from data, with
all network stages including trainable parameters. These parameters are
learned from a large set of simulated ultrasonic data, using several
distributions of interest. This allows searching and optimization in a
significant, large design space around the basic techniques.

The embedding of PWI into a convolutional network requires sev-
eral non-trivial architectural choices. First, the beamforming stage is
approached using an SMF approach, and is reduced to convolutional
computations using a set of depth-specific filters learned from data.
After beamforming, up-sampling and envelope detection with trainable
filters is performed. Then, the image is logarithmically compressed to
account for the large dynamic range of ultrasound signals and to match
the log-domain in which the images are usually displayed. The log
operation also turns the multiplicative speckle pattern to an additive
one, which is easier to model [19]. For speckle removal, a multi-scale
trainable architecture termed UNET [33] is adapted, which is able to
approach and infer signal statistics in large arbitrary image regions.

Recently in [46], a different approach for embedding the entire
inference (RF-channel data to de-speckled image) into a single DNN was
proposed. While our network follows classical elements of the ultra-
sonic reconstruction pipeline, the network in [46] uses a conventional
CNN structure. Neurons in such a network have a small limited

receptive field, as opposed to the learnable SMF proposed by our ap-
proach, and therefore it cannot learn the appropriate time delays in
order to focus the array to each imaged point. Hence, the appropriate
time delayed RF signals are calculated in advance and feed into the
network. This results in a very large input of size × ×N N Nz x elm where

×N Nz x represents the number of imaged points and Nelm is the number
of elements in the array. Such a large input is only feasible for imaging
small areas ( = =N N 64z x in [46]); however it is not appropriate for
PWI applications, in which one usually images a large area at once
using a large transducer array.

In Section 2 the proposed network model is presented. Section 3
discusses the training procedure of the network along with details of the
simulated dataset used. In Section IV, the network is evaluated using
simulated and real data, including experimental phantom and in-vivo
data publically available by the PICMUS challenge [47]. The empirical
results indicate that the learned network provides contrast and re-
solution significantly superior with respect to traditional DAS algorithm
followed by common speckle reduction methods.

2. Network design

Our network architecture is based on a CNN receiving as input a
matrix of ×N Nt elm, representing the channel RF signals acquired by
Nelm transducers, sampled at Nt time steps. It outputs a reconstructed
image of size ×N Nz x ( = = =N N N and2, 000, 128, 480t zelm

=N 384x in the experiments – see Section 4). The proposed network,
presented in Fig. 1, consists of two main parts: (1) a beamforming
network based on an SMF architecture, discussed in Section 2.1; (2) a
speckle reduction module, based on a residual UNET architecture [33]
(described in Section 2.2). The latter is applied after envelope detec-
tion, transforming to log space and a 2-layer convolutional sub-net-
work.

2.1. Beamforming by a spatial matched filters network

The beamforming network is based on a matched filter method for
enhancing the SNR of the received RF signals [12–14]. Generally, SMF
calculates the beamformed image y z x( , ) at location z x( , ) by pre-
forming correlations between the received RF signals s t x( , )i r (sampled
at t t{ , , }N1 t time samples and x x{ , , }N1 elm transducer locations) and a
predefined filter G t x z x( , ; , )i r which represents the RF signals obtained
from a point reflector located at the imaging point z x( , ):

=
= =

y z x s t x G t x z x( , ) ( , ) ( , ; , ).
i

N

r

N

i r i r
1 1

t elm

(1)

For PWI, we may assume that for a given depth z, the filters are
laterally invariant, i.e. there are x -independent filters F t l z( , ; ) such
that =G t x z x( , ; , )i r F t x x z( , ; )i r and equation (1) can be written as a
convolution of the form

=
= =

y z x s t x F t x x z( , ) ( , ) ( , ; ).
i

N

r

N

i r i r
1 1

t elm

(2)

While in classical implementations of SMF [12–14], G t x z x( , ; , )i r is
based solely on a physical description of the spatial impulse response, in
this work the matched filters are learned from the training data.
Moreover, since Eq. (2) defines a convolution, for a fixed depth z, it can
be implemented using a standard convolutional layer with a single
filter. In order to use a finite set of filters, the depth range is quantized
into a set d d{ , , }N1 z of Nz distinct depth values, where the number of
filters Nz is application dependent and defines the desired axial output
resolution. The size of the filters ( ×H Dj j for =j N1, .., z in Fig. 1) is
depth dependent and is set to capture the support of the theoretical
spatial impulse response of a scatterer at depth dj. The output of each
filter is a single line of size × N(1 )elm . These lines are merged together
to form an image of size ×N N( )z elm .
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Following the depth-dependent filtering, the resulting map is up-
sampled in the lateral direction to the required number of pixels

×N N( )z x using a learnable transpose convolutional layer initialized to a
bilinear interpolator [48]. Then, oscillations caused by the wave nature
of the beamformed signals are removed. This is done by a square-law
envelope detector [49,50], applied to every column x , of the form

= + + <=v d x h L k y d k x d d( , ) ( ) ( , ) 0n k L
L

n n N
2

z (3)

where y z x( , ) is the up-sampled input image and +h R L2 1 is a low pass
filter. The filter is learned, but it is initialized to a hamming low-pass
filter with a cutoff wave-number of f c/c , where fc is the center fre-
quency of the signals and c is the material velocity.

Following the envelope detection, a log transformation is applied to
the image in order to compress the large dynamic range of ultrasound
signals and to match the log-domain in which the ultrasonic images are
usually displayed. Furthermore, the log operation also transforms the
multiplicative nature of the speckle pattern into an additive one [19],
which is easier to remove (Section 2.2).

Finally, the log-compressed image is further processed by two
convolutional layers, each composed of 16 filters of size 3 X 3, followed
by Batch Normalization (BN) [51] and a Rectified Linear Unit (ReLU)
[52]. This result in 16 filtered maps, which are combined by a 1 X 1
convolutional filter into a single beamformed image (presented as an
intermediate output in Fig. 1).

2.2. Speckle reduction by a residual UNET architecture

The network presented in Section 2.1 was designed in order to infer
a beamformed image representing localized scatterers, indicating
changes in the mediums impedance. However, it was not designed to
reduce speckle which is usually of a larger spatial extent. In order to
reduce such speckle pattern, a modified version of the UNET archi-
tecture, originally proposed for medical image segmentation [33], is
applied. For this network, we take as input the 16 upper channels
calculated by the network presented in Section 2.1 (see Fig. 1). Then,
instead of directly learning the transformation between these maps and
a true clean image, which may lead to slow convergence [53], the re-
sidual between the beamformed image (intermediate output in Fig. 1
which contains speckle noise) and the clean image is learned. This re-
sidual amounts to the (negative of the) speckle pattern, and the network

learns this pattern by training a UNET [33] structure, presented in
Fig. 2.

The UNET network is a type of Encoder-Decoder network with skip
connections (presented by horizontal blue lines in Fig. 2). The blue
boxes in Fig. 2 represent feature maps produced in the encoder stage
(left side of the U structure). These are formed by repeated application
of ×3 3 convolutional filters followed by Batch Normalization (BN)
[51] and a ReLU nonlinear function [52] (represented by horizontal red
arrows). Processing is sequentially done in multiple image scales
(spatial resolutions). After each encoder stage, feature maps are trans-
ferred to a coarser spatial scale by max pooling and down sampling (the
azure arrows in Fig. 2). The final feature maps at each image resolution
are then integrated by the decoder (right side of the U structure). At
decoder scale i, an initial feature map is created by concatenation of the
feature maps from scale i of the encoder and decoder features maps of
the higher resolution i + 1. The latter are up sampled to reach scale i
and are going through a ×1 1 convolution to reduce the number of
maps by a factor of 2. At each scale, the decoder processes the maps
with several ×3 3 convolutional maps, before up-sampling them to the
next scale. The final feature maps are at the resolution of the original
input channels, yet they include feature maps with neurons of very
large receptive field, capable of multiple scale analysis. A final ×1 1
convolution layer is then used to output the desired residue image.

Such a network provides good spatial integration capabilities by
including features from multiple image resolutions interacting in a
single final layer. Since each output pixel should describe the re-
flectivity in a cluster of unknown size around it (see Section 3.2), such
multiple-scale integration of spatial information is required.

3. Network training

Two datasets were generated for network training, each containing
10,000 simulations. The first (details in Section 3.1), includes simple
simulations composed of highly separated point reflectors (scatterers).
It is used for training of the beamforming sub-network weights. The
second training set (details in Section 3.2) is based on a more involved
simulation mimicking realistic scenarios, where different regions of
speckle intensities exist. End-to-end learning of the SMF weights using
only the second data set, which does not contain isolated scatterers,
poses a difficult learning problem for the deep network, and our pre-
liminary experiments exhibited learning failures in this setting. The

Slice, (z1=2mm) Slice, (z2=2.1mm) Slice, (z480=49.9mm)

Conv(H1xD1x1) Conv(H2xD2x1) Conv(H480xD480x1)

Merge(480x128)

1x128x1 1x128x1 1x128x1

H1x128x1 H2x128x1 H480x128x1

Input (2000x128x1)

480x128x1

U-NET

Spatial Matched Filters

Envelope Detection

480x384x1

+

Log(x)

Conv2DTranspose(1x5x1)
480x384x1

480x384x16

Final Output(480x500x1)

Intermediate Output(480x384x1)
480x384x1

[Conv(3x3x16)+BN+RELU]X2Conv(1x1x1)

480x384x1

480x384x1

Fig. 1. High level architecture of the
proposed deep convolutional network.
The beamforming subnet is based on a
set of depth specific two dimensional
convolutions whose output is combined
into a single image, followed by up-
sampling (by a transpose convolutional
layer), envelope detection, log trans-
formation, and a small two-layer con-
volutional network resulting in 16 fil-
tered channels. These channels are the
source for two outputs. The first is the
intermediate output which is achieved
by a 1 X 1 convolutional filter and is
aimed at identifying isolated scatters.
The second is the final-output which is
performed by a UNET network, de-
scribed in detail in Fig. 2, and is aimed
for speckle reduction.
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difficulty is due to the indirect inference involved, and the large number
of parameters in the SMF filters, which are of a large spatial extent. We
therefore used a two-stage learning phase in which the weights learned
from the first dataset were used as initialization for training with the
second set.

All simulation data was created using the Field-II ultrasound simu-
lation program [54]. The material velocity was set to µ1.54[mm/ sec]
and all scatterers where positioned between lateral position
x [ 25, 25]mm and depthz [2, 50]mm. In all simulations the
transducer parameters defined by the PICMUS challenge [47] were
used, presented in Table 1.

Training was done with the ADAM gradient-based optimization
method [55] with a mini batch size of 10 images and a learning rate of
0.001. Each dataset was divided to 8,000 training simulations and
2,000 simulations in a validation set. Training proceeded until the error
on the validation set did not improve for 4 epochs. Networks were
implemented using the Keras [56] software with a Tensorflow [57]
backend and took about 8 hours on an NVidia 1080Ti GPU.

3.1. Beamforming training using sparse scatterers simulations

For training the beamforming network 10,000 simulations were
performed, each with 1,000 scatterers of a constant reflectivity. Each
simulation generated a measurement matrix of size ×N Nt elm = 2,000 ×
128 representing the RF signals received from a single plane wave at an
angle of 0o. Additionally, 0.1 mm resolution scatterers-images of
size × =N Nz x ×480 384 were produced, defining the ground truth

output. Scatterers were positioned in the region
x [ 19.5 mm, 19.5 mm] and z [2 mm, 50 mm] relative to the
transducer, which was centered in = =x z( 0, 0) and faced the positive
z axis direction (z axis points downwards in all subsequent figures)1. In
Fig. 3 a sample image of the envelope-RF measurement matrix
(Fig. 3(a)) is shown, along with its respective ground truth image
(Fig. 3(b)).

Training was performed with a L2 loss between the estimated
images (intermediate output in Fig. 1) and the ground truth images. L1
regularization on the matched filters weights was added since these are
expected to be highly sparse. The low-pass filter of the envelope de-
tector was initialized to a hamming filter while all other weights were
randomly initialized using the Xavier uniform initialization scheme
[58].

The learned filters, represented by F t l z( , ; ) in equation (2), for
=z and10, 20, 30 40mmare presented in Fig. 4. On top of the filters,

red lines present the delay times dT l z( ; ) which were computed ac-
cording to the time it takes for a plane wave to reach a scatterer posi-
tioned at depth z and laterally diverted by =l x xn from transducer
elements, positioned at x x{ , , }N1 elm :

= + +dT l z z l z
c

( ; ) ,
2 2

(4)

where c is the medium sound velocity. One can observe that the learned
filters are indeed very sparse and follow adequately the spatial spread
of the beam (4). Moreover, the filters reflect the temporal oscillatory
nature of the received RF signals related to the transducers bandwidth
and central frequency. Finally, it is clear that the filters also perform
channel apodization, by giving less weight to channels farther from the
center transducer element. The effective channel support becomes
smaller for smaller depths. Such filters, which describe the impact of a
single isolated scatterer, allow precise localization with improved SNR.

In Fig. 5 a reconstruction result example from the validation set is
presented (utilizing the trained filters presented in Fig. 4). One can
observe the improved resolution of the proposed method (Fig. 5(c)),
allowing separation of close scatterers which is not possible using the

1 16 16 16

16 32 32

32 6464

12864 128

256 256128

128

6464

32 32

16 16

256 128

64

32

128

1

Skip & concatenation
2x2 Up + 3x3 Conv + BN + Relu

3x3 conv +BN + Relu

2x2 max pooling

1x1c conv

Fig. 2. The UNET [22] architecture utilized for modeling the speckle pattern. The network enables reasoning over image areas of multiple scales, required for
inferring the cluster to which a pixel belongs. Such inference is the key for averaging over possibly-large unknown image areas, as required for speckle modeling and
reduction.

Table 1
Transducer Parameters.

Parameter Value

Pitch 0.30 mm
Element width 0.27 mm
Element height 5 mm
Elevation focus 20 mm
Number of elements 128
Aperture width 38.4 mm
Transmit frequency 5.208 MHz
Sampling frequency 20.832 MHz
Pulse bandwidth 67%
Excitation 2.5 cycles

1 While the simulations contained scatterers in a large region of 50 mm × 50
mm, the reconstruction was done only for the 48 mm × 38.4 mm area in front
of the transducer in order to comply with the reconstruction region of the
PICMUS datasets (see experiments in Section 4).
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Fig. 3. Simulation of sparsely distributed scatterers. (a) The 2,000 × 128 envelope-RF measurements matrix. (b) Ground truth scatterers-image, the scatterers are
marked by red circles. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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] ] ] ]

Fig. 4. Learned spatial matched filters at depths 10 mm (a), 20 mm (b) 30 mm (c) and 40 mm (d). Delay times of a single scatterer are marked in red. These learned
filters, which are represented by F t l z( , ; ) in equation (2), are very similar to the impulse responses of single scatterers positioned at the different depths. One can see
that 1) The filters encode the time delays of a single scatterer. 2) For small depths arcs have smaller effective support, reflecting the fact that transducers elements
facing the scatterer are closer to it, and hence they have larger weights. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Fig. 5. Reconstruction results from a simulation of sparsely-distributed scatterers. (a) Ground truth scatterers - this is a zoom-in on a sub-region in a validation
example. (b) DAS reconstruction. (c) Proposed network – Intermediate output.
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DAS method (Fig. 5(b)). However, for medical ultrasound applications
the scatterers are not typically isolated and their density is causing the
speckle pattern in the beamformed image. In order to deal with this
speckle noise, the whole network (presented in Fig. 1) has to be trained
on a representative database containing densely-distributed scatterers.

3.2. Training utilizing fully resolved speckle simulations

10,000 phantoms were synthesized for full network training, con-
taining different echogenicity regions of the imaged medium. 200,000
scatterers, positioned in a 2D plane facing the transducer (x-z plane),
were sampled in each phantom in order to generate images with a fully
developed speckle, in a similar manner to [59]. While this neglects the
effect of scatterers positioned outside the x-z plane, it enabled us to
generate a larger set of simulated phantoms (10,000) in a reasonable
execution time. This amount of phantoms was needed in order for the
network to generalize well on simulation and experimental phantoms
(see Section 4).

In each phantom, we generated ten random two-dimensional elliptic
clusters of different size, orientation and standard deviation of the
scatterers. We have chosen ellipse shapes as our primitives since they
serve as a good first-approximation to general convex shapes. It should
be noted that while this may create some tendency to learning convex
regions, the training data contains non-convex regions created by
layered structure of multiple ellipses. The standard deviation of the
scatterers' reflectivity represents the average echogenicity of the scat-
terers in a region [46]. Specifically, the inferred image resulting from a
homogeneous region of tissue, of constant echogenicity, should produce
a uniform response, as opposed to a speckle response, while preserving
the structure and echogenicity of the region. The ellipse centers were
drawn uniformly in the range x [ 25, 25] mm and z [2, 50] mm.
The ellipse semi-axes and orientations were drawn uniformly with
r [0, 10] mm and [0, ]. The standard deviation of the scatterer
reflectivity was drawn uniformly in a log scale of [ 2, 2] i.e. the stan-
dard deviation of each ellipsoid was set in the range[10 , 10 ]2 2 .

In Fig. 6(a)-(b) an image of densely-distributed scatterers is pre-
sented, along with its ground truth cluster image (taken from the va-
lidation set). The transducer and the transmission scheme along with
the medium properties were all identical to the sparsely-distributed
simulations (Section 3.1).

The network was trained by a combination of two losses. The first is
a L2 loss between the scatters reflectivity amplitude image (like
Fig. 6(a)) and the intermediate output of the network. This loss pre-
serves the ability of the beamforming network to recognize isolated
scatters. The second is a L1 loss, demanding that each output pixel will
match the echogenicity (standard deviation of the scatterers' re-
flectivity) in its local cluster, i.e. it is trained to infer the speckle-free
image as shown in Fig. 6(b). The training objective was to minimize an
average of the two losses. Beamforming-network weights were

initialized to the values learned using the separated point reflector
dataset (Section 3.1), while the UNET network weights were randomly
initialized using the Xavier uniform initialization scheme [58].

Reconstruction results of this simulation are presented in
Fig. 6(c)–(d) for the DAS method2 and our final network output re-
spectively. One can observe the better contrast ratio and the smoother
results of the proposed network. As will be discussed later, these
smoother results do not come on the expense of the axial or lateral
resolution of the output.

4. Results

In this section the network is quantitatively tested on external da-
tasets publically available by the PICMUS challenge [47]. The RF sig-
nals in all simulations and experiments were acquired using the same
transducer, with the parameters from Table 1 (This transducer was also
used in the simulations for training our network). We compare our
method to DAS as well as DAS followed by an influential speckle re-
duction technique: DPAD [21], OBNLM [26] and ADMSS [22]. Tuning
parameters for the despeckling methods were set according to Table 1
in [22]. To better understand the contribution of the two network parts,
we also tested a network including the UNET but without the beam-
forming network. In this variation, the UNET receives as input the log-
compressed envelop of a single DAS beamformed image (This is con-
trary to the proposed network in which the network receives 16 learned
maps as input). This UNET network was trained in a similar manner to
the proposed network as described in Section 3.2. All images are pre-
sented using a constant 60 dB dynamic-range.

4.1. Resolution evaluation

For evaluating the resolution of the produced images, the PICMUS
challenge provides two datasets obtained by scanning a target con-
taining separated scatterers. The first, denoted by SR, is based on a
noise free simulation of twenty separated scatterers. The second, de-
noted by ER, is based on a physically scanned in-vitro tissue mimicking
phantom, containing seven nylon wires. Reconstruction results for the
SR phantom by DAS, DPAD, OBNLM, ADMSS, DAS + UNET and the
proposed method (intermediate and final outputs) are presented in
Fig. 7.

Fig. 8 presents the axial and lateral response of the scatterer posi-
tioned at =z mm20 . It is clear that for this case, which does not contain
any speckle, our proposed network achieved the best resolution results
already in its intermediate output and these results were also retained
in the final de-speckled output. The network achieved axial and lateral
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Fig. 6. Fully resolved speckle simulation containing different ellipses with different standard deviation of scatterer reflectivity, along with reconstruction results. (a)
Image of the densely-distributed scatterers. (b) Ground truth clusters presenting the standard deviation of scatterer reflectivity. (c) DAS reconstruction. (d)
Reconstruction using the proposed network (final output).

2 The DAS reconstruction software is freely available from the PICMUS site:
https://www.creatis.insa-lyon.fr/Challenge/IEEE_IUS_2016
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Full-Width-Half-Maximum (FWHM) resolution indexes of 0.19 mm and
0.27 mm respectively (see Table 2- row no. 7). Good results were also
achieved by the UNET + DAS method which improved over DAS and
achieved axial and lateral FWHM values of 0.24 mm and 0.52 mm re-
spectively. The OBNMLF and ADMSS despeckling methods obtained
resolution results similar to DAS, while the DPAD method compromised
the output resolution.

Fig. 9 presents the results for the ER phantom. Axial and lateral
response of the scatterer positioned at 18.7 mm depth is shown in
Fig. 10. For this case, in contrast to the SR dataset which did not contain
speckle, the intermediate and final outputs of the network are sig-
nificantly different. The intermediate output suppressed all scatterers
except the most significant ones. While this resulted in good FWHM

resolution indexes (0.27 mm and 0.41 mm for axial and lateral FWHM
values respectively) it also removed significant tissue areas such as the
high echogenicity circle present at x mm z mm( 10 , 28 ). Our
final output, on the other hand, achieved the best FWHM resolution
values (0.22 mm and 0.35 mm for axial and lateral FWHM values re-
spectively) and was also able to suppress the speckle pattern while
preserving different tissue areas like the circle at the middle-left of the
image.

Regarding DAS followed by a despeckling method, it is seems that
OBNMLF and ADMSS methods slightly reduced the speckle pattern
while still preserving the DAS resolution (0.57 mm and 0.89 mm for
axial and lateral FWHM values respectively). However DPAD, and
DAS + UNET methods obtained an inferior resolution compared to the

Fig. 7. Reconstruction results for the 20 point simulated target obtained by (a) DAS, (b) DPAD, (c) OBNMLF, (d) ADMSS, (e) DAS + UNET, (f) proposed network –
intermediate output, and (g) proposed network – final output.
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Fig. 8. (a) Axial and (b) lateral response of a simulated scatterer at depth 20 mm. Beam profiles are presented for the DAS, DAS followed by speckle reduction
methods (DPAD, OBNMLF, ADMSS), DAS followed by a learnable UNET, and the proposed method (intermediate and final outputs).
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DAS method, and overly smoothed the image. It should also be noted
that, for the output of the learned methods (DAS + UNET and the
proposed network), there are some regions in the background which are
not uniform and may be attributed to the network not generalizing
well. This is probably due to training which was done solely on simu-
lation datasets. In future research we intend to refine the training using
more experimental data (see Section 5).

4.2. Contrast evaluation

Contrast of produced images in PICMUS was evaluated by two ad-
ditional datasets denoted by SC and EC for simulated and experimental
data respectively. These datasets were obtained by scanning of a target
containing predefined scattering-free regions. For evaluating the con-
trast of the produced images, a Contrast to Noise Ratio (CNR) metric

was calculated by

=
+

CNR
µ µ

20log
| |in out

in out
10 2 2 (5)

where µin and in are the mean and standard deviation of the envelop
signal intensities, measured in DB, inside the scattering-free region and
similarly µout and out are the mean and standard deviation outside the
same region.

Results for the SC dataset are presented in Fig. 11. For this dataset,
the DAS method achieved a CNR of 9.96 and the despeckling methods:
DPAD, OBNMLF and ADMSS improved this to 14.61, 13.38 and 12.6
respectively. DAS + UNET achieved a CNR metric of 27.1 which is the
best result for the SC dataset. The proposed method in its intermediate
output achieved a poor CNR of only 8.81. This is due to the highly
granular nature of the intermediate output which increases the stan-
dard deviations out in (5). The final output, on the other hand, results in
a clean image achieving a second best CNR result of 22.63 for the SC
dataset.

Similar behavior is obtained for the experimental dataset (EC),
presented in Fig. 12. Here the DAS method achieved a CNR of 8.15 and
the despeckling methods: DPAD, OBNMLF and ADMSS improved this to
12.9, 11.35 and 10.85 respectively. DAS + UNET achieved a CNR
metric of 17.3 which is the best result for the EC dataset. However, is
seems that it overly smoothed the image suppressing important details
such as the strong point reflector positioned around x z( 10, 37). For
this case the intermediate output suppressed almost all scatterers be-
sides some at the right-center of the image (due to a hyperechoic area).
Our final output, on the other hand, achieved a relatively smooth image
attaining a CNR of 16.75 while still preserving fine details such as the
strong scatterer at x z( 10, 37).

A full summary of the results is presented in Table 2. In addition to
DAS, the table also include evaluation of adaptive Minimum Variance
(MV) method [60] followed by the DPAD, OBNMLF and ADMSS

Table 2
Evaluation of the methods on the PICMUS dataset in terms of axial and lateral
FWHM resolution (A = Axial, L = Lateral) and CNR for the different datasets
(SR, SC, ER, EC). Best performance metrics are marked in bold.

# Method SR-FWHM SC ER-FWHM EC

A L CNR A L CNR

1 DAS 0.4 0.82 9.96 0.57 0.89 8.15
2 DAS + DPAD 0.81 1.25 14.61 0.87 1.3 12.9
3 DAS + OBNMLF 0.42 0.82 13.38 0.57 0.89 11.35
4 DAS + ADMSS 0.4 0.82 12.6 0.57 0.89 10.85
5 DAS + UNET 0.24 0.52 27.1 0.93 1 17.3
1 MV [60] 0.41 0.12 12.5 0.57 0.43 8.9
2 MV + DPAD 0.91 1.06 16.81 0.87 0.92 14.7
3 MV + OBNMLF 0.59 0.54 15.4 0.59 0.60 13.35
4 MV + ADMSS 0.41 0.12 14.12 0.57 0.44 12.9
9 Proposed –Intermediate output 0.19 0.27 8.81 0.27 0.41 4.55
10 Proposed –Final output 0.19 0.27 22.63 0.22 0.35 16.75

Fig. 9. Reconstruction results for the experimental nylon wires phantom. (a) DAS (b) DPAD (c) OBNMLF (d) ADMSS (e) DAS + UNET (f) Proposed network –
intermediate output (g) Proposed network – final output.

E. Mor and A. Bar-Hillel Ultrasonics 103 (2020) 106069

8



despeckling methods. It can be seen that for the experimental datasets
the proposed method achieved the best FWHM resolution metrics,
while DAS + UNET achieved the best CNR values. Our method
achieved the second best CNR values, providing a good combination
between resolution and contrast.

The publicly available PICMUS challenge [47] also allowed com-
parison of the proposed method to recently published beamforming
methods evaluated on this dataset. The compared algorithms include
methods based on the Coherence Factor (CF) [61] combination of MV
and CF [62], and a method based on a Sparsity Prior (SP) [15]. All
methods were tested on the same PICMUS datasets using the same re-
solution (axial and lateral FWHM) and contrast (CNR) metrics. As can
be seen in Table 3 the proposed method achieved the best axial re-
solution results, while MV-CF [62] attained the best lateral resolution.

In terms of contrast, our method achieved the best result. However, a
better comparison would be to apply these methods with a following
despeckling method such as DPAD, OBNMLF or ADMSS.

4.3. In vivo data

For additional qualitative inspection of the proposed method it was
applied to an in-vivo carotid data set. Longitudinal views of the carotid
obtained by the compared methods are presented in Fig. 13. One can
observe that the DPAD, OBNLM and ADMSS methods reduce the
speckle but it seems that they also smear some of the details. Our
proposed intermediate output produces an image which suppresses
most of the scatterers and amplifies the strong scatterers. However, for
this dataset, the DAS + UNET and our networks’ final output do not
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Fig. 10. (a) Axial and (b) lateral response for a nylon wire located at depth 18.7 mm. Beam profiles are presented for the DAS, DAS followed by speckle reduction
methods (DPAD, OBNMLF, ADMSS), DAS followed by a learnable UNET, and the proposed method (intermediate and final outputs).

Fig. 11. Reconstruction results for the simulated contrast evaluation dataset. (a) DAS (b) DPAD (c) OBNMLF (d) ADMSS (e) DAS + UNET (f) Proposed network –
intermediate output (g) Proposed network – final output.
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give better results than competitors, as they lose important details.
While Fig. 13(g) do provide better segmentation of the artery itself (the
black region in the image), the intima-media complex is not seen well,
and it is difficult to estimate its thickness. This structure can be seen in
the intermediate output (Fig. 13(f)), but it is not segregated in the final
output.

5. Summary and future research directions

An end-to-end deep convolutional neural network was presented,
preforming all the signal processing stages of ultrasonic PWI. The net-
work is composed of two main parts. The first performs the beam-
forming stage based on a set of depth dependent learned spatial filters.
The second is responsible for speckle reduction, performed by a UNET-
like network. The network was trained in two stages. The first involved
just the beamforming part of the network and was based on simulations
of sparsely distributed scatterers. The full network was then trained
using images containing clusters of fully resolved speckle intensities.

Evaluation on simulations and experimental datasets obtained from the
PICMUS challenge indicate that the proposed method is an attractive
choice in terms of resolution and contrast, outperforming DAS followed
by several common despeckling methods. However, the final output of
the proposed method sometimes includes segmentation artifacts,
especially in segmenting delicate lines like the intima-media complex in
Fig. 13. One way to cope with this is to consider in diagnosis both the
intermediate output, which is sensitive to isolated scatterers, and the
final output, which is better in region segmenting in most cases. Future
research avenues that we believe will reduce these artifacts include:

1. Training with a richer prior, including thin strips: Training in this
work was done with simulated images containing ellipse-shaped
areas, which accurately represent convex hull clusters, but not thin
and delicate strips. Adding such strips to the simulated data is likely
to help in establishing a more general prior, and help in segmenting
regions like the intima-media complex.

2. Training with real ultrasonic scans: Network training here was based
on images synthesized with Field-II software simulation [54] ac-
cording to a pre-defined prior. Training with real ultrasonic scans
will provide a better prior, reflecting the domain structure dis-
tribution. In addition such data will include phenomena not simu-
lated by the Field-II software like ultrasonic shadowing, inter scat-
terer interactions, nonlinear effects, different kinds of noise, and
velocity variations.

3. Multiple plain waves: This work dealt with a single plane wave sent
in 0o angle. Extending the method to multiple plane waves at dif-
ferent angles may lead to significant additional improvements.

4. Multiple spatial filters: The depth dependent spatial filtering layer
was trained based on the assumption of constant wave velocity.
Extending the network to include several filters at each depth may
enable more robust results.

Fig. 12. Reconstruction results for the experimental contrast evaluation dataset. (a) DAS (b) DPAD (c) OBNMLF (d) ADMSS (e) DAS + UNET (f) Proposed network –
intermediate output (g) Proposed network – final output.

Table 3
Comparison between earlier methods applied to the PICMUS dataset and the
proposed method in terms of axial and lateral FWHM resolution (A = Axial,
L = Lateral) and CNR for the different datasets (SR, SC, ER, EC).

Method SR-FWHM SC ER-FWHM EC

A L CNR A L CNR

DAS 0.4 0.82 9.96 0.57 0.89 8.15
CF [61] 0.23 0.5 11.93 0.31 0.59 9.65
MV-CF [62] 0.24 0.08 17.19 0.45 0.2 13.05
SP [15] 0.33 0.46 16.3 0.31 0.51 11.6
Proposed -Final Output 0.19 0.27 22.63 0.22 0.35 16.75
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